20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

IRF9150 IRF9151

Avalanche Energy Rated P-Channel Power MOSFETs

Features

- -25A, -60V and -100V
- rps(on) = 0.150Ω
- Single Pulse Avalanche Energy Rated
- SOA is Power-Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance

Description

The IRF9150 and IRF9151 are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are p-channel enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits.

The P-channel IRF9150 is an approximate electrical complement to the N-channel IRF9150,

The IRF types are supplied in the JEDEC TO-204AE metal package.

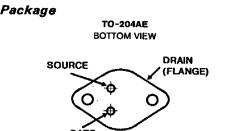
Absolute Maximum Ratings (T_C = 25°C) Unless Otherwise Specified

	IRF9150	IRF9151	UNITS
Drain-Source Voltage VDS	-100	-60	v
Continuous Drain Current			v
$T_{C} = 25^{\circ}C$	-25	-25	А
$T_{C} = 100^{\circ}C$	-18	-18	A
Pulsed Drain Current	-100	-100	A
Gate-Source Voltage	±20	±20	v
Maximum Power DissipationPD (See Figure 18)	150	150	Ŵ
Linear Derating Factor	1.2	1.2	W/9C
Single Pulse Avalanche Energy Rating (3) Eas (See Figure 14)	1300	1300	mJ
Avalanche Current (Repetitive or Nonrepetitive) IAR	-25	-25	Α
Operating and Storage Junction	-55 to +150	-55 to +150	ôc
Maximum Lead Temperature for Soldering	300	300	°C

NOTES:

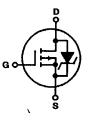
Pulse Test: Pulse width ≤ 300µs, Duty Cycle < 2%

2. Repetitive Rating: Pulse width limited by max, junction temperature. See


3. V_{DD} = 25V, Start T_J = +25^OC, L = 3.2mhy, R_G = 25Ω, Peak I_L = 19A (See Figures 14 and 15)

Transient Thermal Impedance Curve (Figure 5)

perature. See (See Figures 14 and 15)



NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Terminal Diagram

P-CHANNEL ENHANCEMENT MODE

Quality Semi-Conductors

Specifications IRF9150, IRF9151

Electrical Characteristics $T_C = +25^{\circ}C$, Unless Otherwise Specified

CHARACTERISTIC			LIMITS			
	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain-Source Breakdown Voltage IRF9150	BVDSS	V _{GS} = 0V, I _D = -250µA	-100	-	-	v
IRF9151	1		-60	-	-	V
Gate Threshold Voltage	VGS(TH)	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-2.0	-	-4.0	V
Gate-Source Leakage Forward	IGSS	$V_{GS} = -20V$	-	~	-100	nA
Gate-Source Leakage Reverse	IGSS	V _{GS} = 20V	-	-	100	nA
Zero Gate Voltage Drain Current	IDSS	V _{DS} = Max Rating, V _{GS} = 0V	-	-	-250	μA
-		$V_{DS} = Max Rating x 0.8, V_{GS} = 0V,$ $T_{C} = +125^{\circ}C$	-	-	-1000	μA
On-State Drain Current (Note 1)	ID(ON)	VDS > ID(ON) × IDS(ON) Max, VGS = 10V	-25	-	-	A
Static Drain-Source On-State Resistance (Note 1)	^r DS(ON)	$V_{GS} = -10V, I_D = -10A$	-	0.09	0.15	Ω
Forward Transconductance (Note 1)	9ts	$V_{DS} = -10V, I_D = -12.5A$	4	10	-	S
Input Capacitance	CISS	$V_{GS} = 0V, V_{DS} = -25V, f = 1.0MHz$	-	2400	-	pF
Output Capacitance	COSS	See Figure 10	-	850	-	pF
Reverse Transfer Capacitance	CRSS		-	400	-	pF
Turn-On Delay Time	td(ON)	$V_{DD} = -50V, I_D = -25A, R_G = 6.8\Omega,$	-	16	24	ns
Rise Time	tr	$R_D = 2\Omega$. See Figures 16 and 17.	-	110	160	ns
Turn-Off Delay Time	td(OFF)	(MOSFET switching times are essentially independent of operating temperature.)	-	65	100	ns
Fall Time	t _f	independent of operating temperature)	-	46	70	ns
Total Gate Charge (Gate-Source + Gate-Drain)	್ಕ	V _{GS} = ~10V, I _D = -25A, V _{DS} = 0.8 Max Rating. See Figures 11 & 19 for test circuit.	-	82	120	nC
Gate-Source Charge	Qgs	(Gate charge is essentially independent of	-	14	-	nC
Gate-Drain ("Miller") Charge	Q _{ad}	operating temperature.)	-	42		nC
Internal Drain Inductance	LD	Measured between contact screw on header that is closer to source & gate pins & center of die. Modified MOSFET symbol showing the internal device inductances. p D	-	5.0	_	nH
Internal Source Inductance	LS	Measured from the source pin, 6mm (0.25") from header & source bonding pad.	- ````````````````````````````````````	13	-	nH
Junction-to-Case	Rejc		-	-	0.83	°C/W
Case-to-Sink	Recs	Mounting surface flat, smooth and greased	-	0.1	-	°C/W
Junction-to-Ambient	Reja	Free Air Operation	-	Г <u>-</u> -	30	°C/W

Source Drain Diode Ratings and Characteristics

Continuous Source Current (Body Diode)	Is	symbol showing the	-	-	-25	A
Pulse Source Current (Body Diode) (Note 3)	ISM		-	-	-100	A
Diode Forward Voltage (Note 2)	VSD	$T_{C} = +25^{\circ}C, I_{S} = 25A, V_{GS} = 0V$	-	0.9	1.5	V
Reverse Recovery Time	trr	T _J = +25°C, I _F = 25A, dI _F /dt = 100A/µs	-	150	300	กร
Reverse Recovered Charge	QRR	T _J = +25°C, I _F = 25A, dI _F /dt = 100A/µ8	0.3	0.7	1.5	μC
Forward Tum-on Time	ton	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.	-	-	-	-

NOTES: 1. Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 2% Duty Cycle ≤ 2% NOTES: 1. Pulse width limited by max. Junction temperature. See Transient Thermal Impedance Curve (Figure 5)

3. V_{DD} = 25V, Start T_J = +25^oC, L = 3.2mhy, R_G = 25Ω, Peak I_L = 25A (See Figures 14 and 15)